SVR-Based Model to Forecast PV Power Generation under Different Weather Conditions

نویسندگان

  • Utpal Kumar Das
  • Kok Soon Tey
  • Mehdi Seyedmahmoudian
  • Mohd Yamani Idna Idris
  • Saad Mekhilef
  • Ben Horan
  • Alex Stojcevski
چکیده

Inaccurate forecasting of photovoltaic (PV) power generation is a great concern in the planning and operation of stable and reliable electric grid systems as well as in promoting large-scale PV deployment. The paper proposes a generalized PV power forecasting model based on support vector regression, historical PV power output, and corresponding meteorological data. Weather conditions are broadly classified into two categories, namely, normal condition (clear sky) and abnormal condition (rainy or cloudy day). A generalized day-ahead forecasting model is developed to forecast PV power generation at any weather condition in a particular region. The proposed model is applied and experimentally validated by three different types of PV stations in the same location at different weather conditions. Furthermore, a conventional artificial neural network (ANN)-based forecasting model is utilized, using the same experimental data-sets of the proposed model. The analytical results showed that the proposed model achieved better forecasting accuracy with less computational complexity when compared with other models, including the conventional ANN model. The proposed model is also effective and practical in forecasting existing grid-connected PV power generation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support Vector Regression for Solar Power Prediction

Abstract In recent years, renewable energies have been covering an increasing part of the worldwide electrical power demand. The additional volatility introduced to power grids by weather dependent renewable energy sources, i.e., wind and solar, makes it necessary to improve the accuracy of energy forecasts, so that the underlying electrical grid can be operated in a cost efficient way. Governm...

متن کامل

A new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model

The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging.  Weather radars are capable of detecting and displaying storm-related ...

متن کامل

Day-Ahead Solar Forecasting Based on Multi-level Solar Measurements

The growing proliferation in solar deployment, especially at distribution level, has made the case for power system operators to develop more accurate solar forecasting models. This paper proposes a solar photovoltaic (PV) generation forecasting model based on multi-level solar measurements and utilizing a nonlinear autoregressive with exogenous input (NARX) model to improve the training and ac...

متن کامل

Neuro-fuzzy short-term forecasting model for PV plants optimized with genetic algorithm

This paper presents a short-term forecasting model designed to forecast the hourly power production in a grid-connected photovoltaic plant. The model is based on neuro-fuzzy systems optimized with the use of a genetic algorithm. The model uses as inputs forecasted weather variables obtained with a meso-scale numerical weather prediction model. The model was applied to forecast the hourly produc...

متن کامل

Data on Support Vector Machines (SVM) model to forecast photovoltaic power

The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled "Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data" (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the prin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017